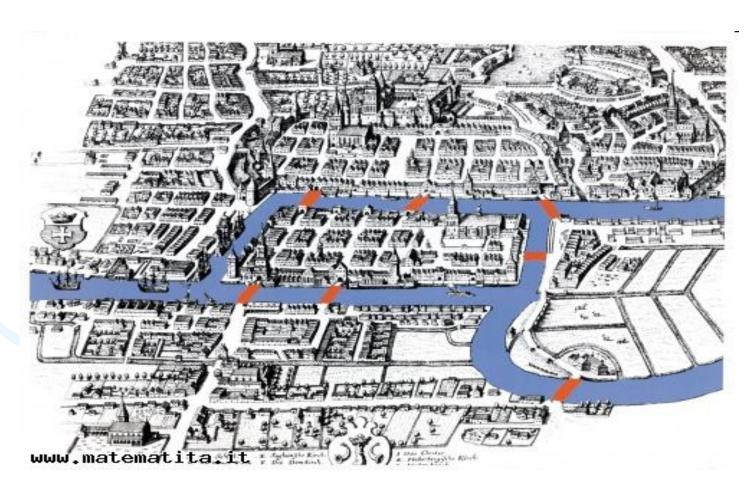
I Grafi

di Paola Guazzaloca

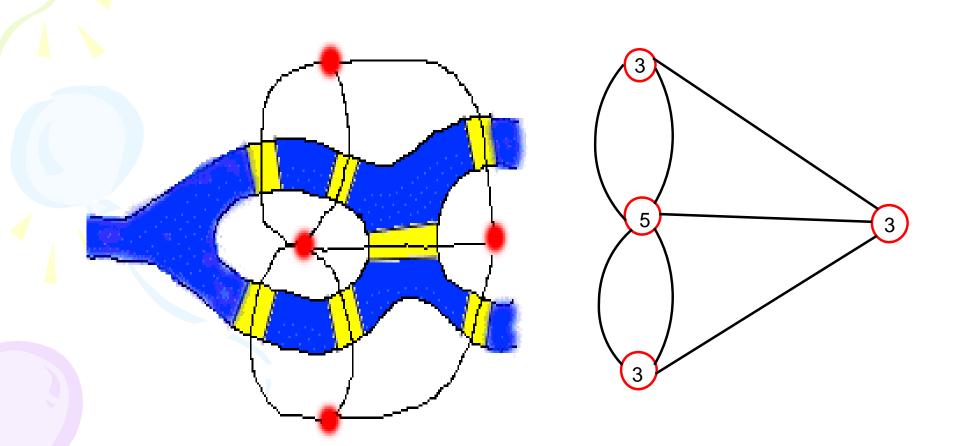
Premessa

- data di nascita "sicura": Eulero (1736) risolve il problema dei ponti di Konisberg
- applicazioni di carattere pratico nel 19-esimo secolo:problemi di assegnazione, trasporti, flussi di una rete di tubazioni, circuiti elettrici e diagrammi molecolari
- classificata, in matematica, come ramo della topologia (ma strettamente legato all'algebra e alla teoria delle matrici)

I ponti di Konigsberg (Kaliningrad sul Pregel)



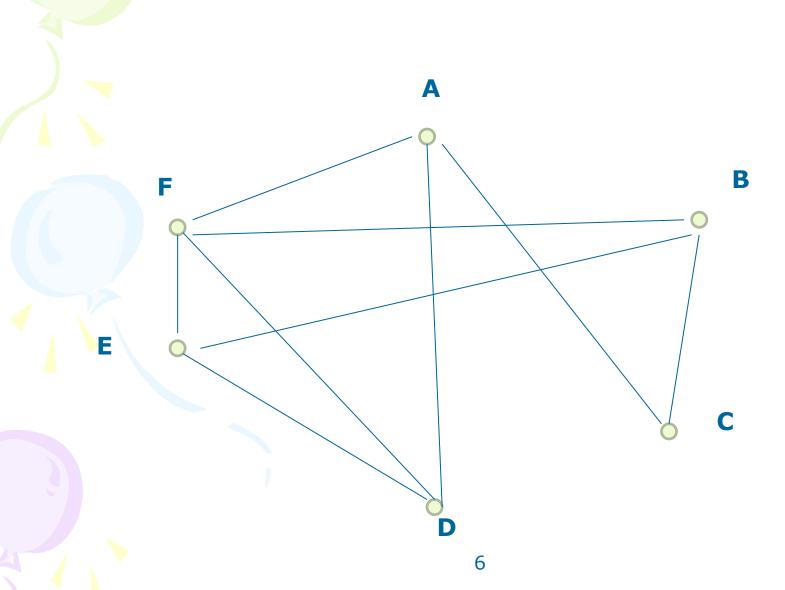
Ponti di Konigsberg



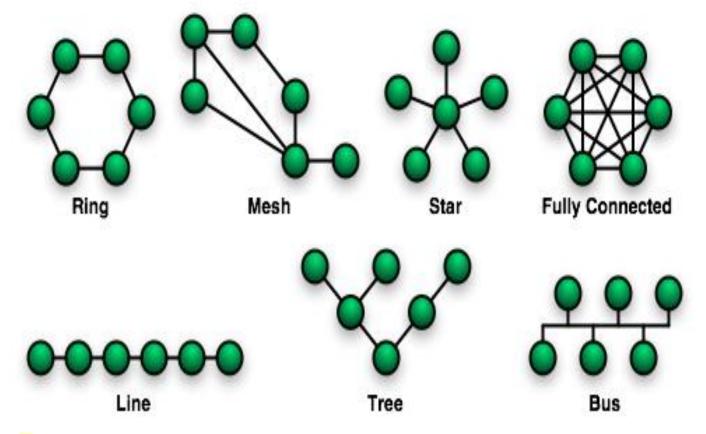
A partire da un esempio

Abbiamo le squadre di calcio A B C D E F, trascorse alcune settimane alcune squadre hanno già giocato fra loro altre no

- A ha giocato con C;D;F
- B ha giocato con C;E;F
- C ha giocato con A;B
- D ha giocato con A;E;F
- E ha giocato con B;D
- F ha giocato con A;B;D;F



VARI TIPI DI GRAFI



Grafo planare

È un grafo che si può disegnare in modo che gli spigoli non abbiano intersezioni o punti comuni all'infuori di vertici

Interpretazione pratica:

carta stradale che mostra i collegamenti fra i vari crocicchi e villaggi

(attenzione ai cavalcavia incontri in punti che non sono vertici)

Grafo planare interpretazione pratica

Circuiti

- schema di una rete elettrica in cui gli spigoli sono i fili conduttori che congiungono i vari nodi
- Produzione in serie dei circuiti di base in forma di lamine metalliche su un supporto di materiale plastico → intersezione di due spigoli darebbe un corto circuito

Problemi planari

Problema dei servizi

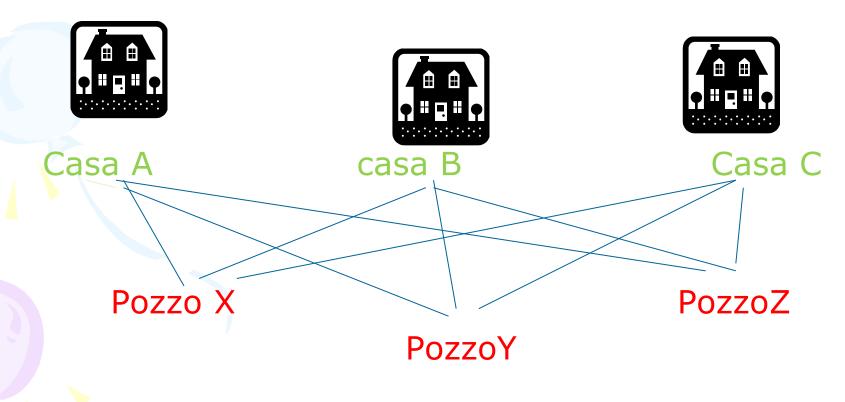
3 CASE e 3 POZZI

Natura del luogo fa si che uno o l'altro dei tre pozzi sia asciutto per cui gli abitanti debbono poter raggiungere ciascuno dei tre pozzi, l'armonia dura poco e nasce l'esigenza di raggiungere i pozzi senza incontrarsi.

Si può ridurre il numero di incroci fra i percorsi ad uno

Problemi planari

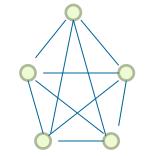
Problema dei servizi



Grafo (o rete)

- Punti di intersezione delle linee → VERTICI
- Le linee che si incrociano → SPIGOLI o ARCHI
- Una rete si dice "percorribile" se si passa per ciascuno spigolo esattamente una sola volta: viaggio che a partire da un vertice la percorre una sola volta senza ripetere un arco (per i vertici si può passare un numero qualsiasi di volte)

GRAFO NULLO Composto solo di vertici isolati



- (1) (2) (3)

(4)

(5)

GRAFO COMPLETO Ogni coppia di vertici è unita da uno spigolo

Grafo (o rete)

VERTICI

- Vertice pari → se vi passa un numero pari di archi
- Vertice dispari → se vi passa un numero dispari di archi

Indovinelli e grafi

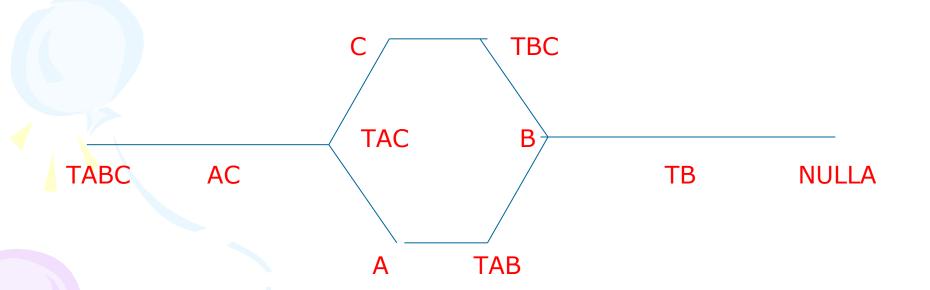
Problema del traghetto

- Traghettatore (T) deve trasportare un cane lupo(A) una capra (B) ed una sporta con cavolo (C)
- Non si può lasciare soli sulla stessa sponda: il cane lupo con la capra e la capra con il cavolo

Che cos'è un GRAFO

INDOVINELLI E GRAFI

Problema del traghetto (barca solo 1 oltre T)



Indovinelli e grafi

Un grafo può essere pensato come un gioco:

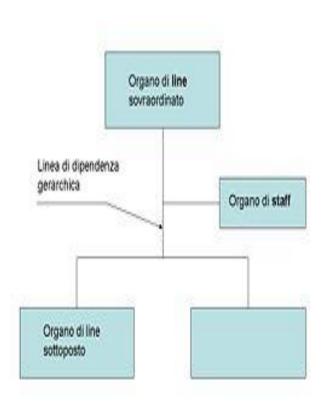
- i vertici rappresentano le varie posizioni del gioco
- gli spigoli rappresentano le mosse permesse dalle regole

ALBERI GRAFI PARTICOLARI

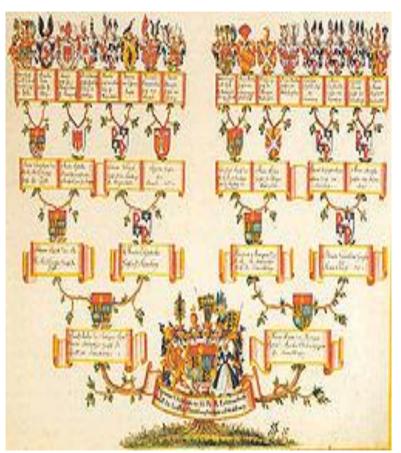
Un albero è un grafo connesso ma senza circuiti

Utilizzati in molte situazioni:

- concrete
- formali della matematica (calcolo probabilità, algebra classica es triangolo di tartaglia)

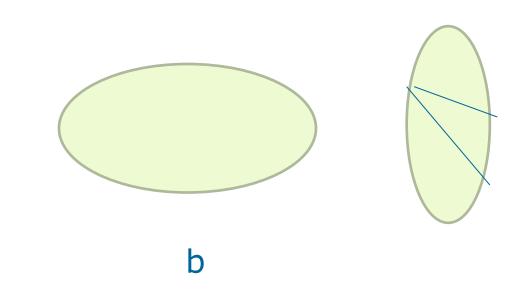


ALBERI GRAFI PARTICOLARI



REGIONI

RETI REGIONI E UNA FORMULA IMPORTANTE Problema in quante parti una rete (o grafo) divide una superficie



a

In

- a una sola regione
- b due regioni
- c quattro regioni

Formula di Eulero

V nro vertici A nro di archi R nro di regioni

$$V-A+R=2$$

Le domande della topologia

- NON Quanto è lungo? Quanto è lontano?
 Quanto è grande?
- MA Dove? Tra quali cose? Dentro o fuori?

La TOPOLOGIA si occupa di punti, linee e figure e per le figure ammette che cambino di grandezza e di forma (geometria su un foglio di gomma)

La **Topologia** o **studio dei luoghi** (dal greco τοπος, luogo, e λογος, studio) è una delle più importanti branche della matematica moderna.

Si caratterizza come lo studio delle proprietà delle figure e delle forme che non cambiano quando viene effettuata una deformazione senza "strappi", "sovrapposizioni" o "incollature".

Per esempio un CUBO e una SFERA sono oggetti topologicamente equivalenti (cioè *omeomorfi*)

perché

possono essere deformati l'uno nell'altro senza ricorrere a nessuna incollatura, strappo o sovrapposizione;

una SFERA e un TORO invece non lo sono, perché

il toro contiene un "buco" che non può essere eliminato da una deformazione.

24

- Geometria Euclidea → studio dei corpi che mantengono sempre la stessa grandezza (la distanza fra due punti rimane costante)
- Topologia → studio dei corpi che cambiano grandezza e forma quando vengono spostati (in sostanza non ammette corpi rigidi)

Eulero e le reti: Soluzione dei Problemi dei Ponti

- il numero di vertici dispari di una rete è sempre pari
- una rete con <u>tutti i vertici pari</u> si può percorrere in un solo viaggio (ritorno al punto di partenza – circuito euleriano)
- se una rete contiene <u>due e solo due</u> vertici dispari si può percorre in un solo viaggio ma senza tornare al punto di partenza (cammino euleriano)
- Se una rete contiene vertici dispari in numero di 4, 6, 8 o qualsiasi altro numero pari maggiore di 2 non può essere percorsa in un solo viaggio (nro viaggi = metà vertici dispari)

Eulero e le reti: Soluzione dei Problemi dei Ponti

Il grafo dei Ponti

Il modello trasforma:

- i settori della città in punti o meglio in vertici
- I ponti negli spigoli

Si nota che i 4 vertici sono dispari → occorrono più viaggi per percorrere tutto il grafico esattamente in numero di due

Eulero e le reti: Soluzione dei Problemi dei Ponti

RIFLESSIONE

Per la risoluzione un "nuovo tipo" di Geometria.

L'analisi del problema:

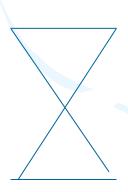
- non coinvolge lunghezze, forme, aree, angoli
- si basa su posizioni e su come questi vengono collegati con gli archi

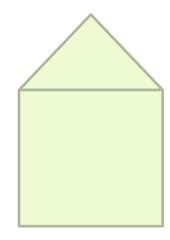
Un gioco: le casette

Problema:

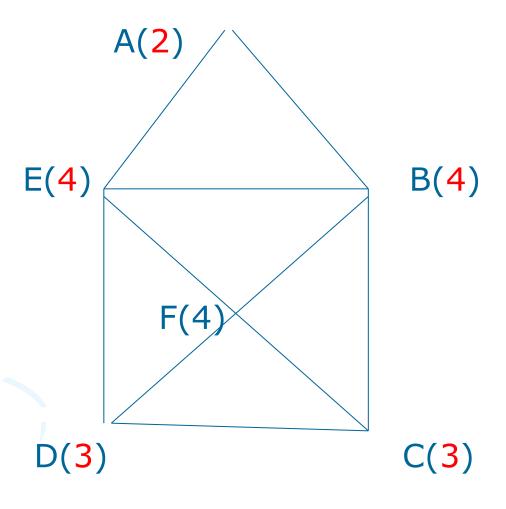
Casetta con dentro la croce è possibile disegnarla senza staccare la matita dal foglio

Equivale al problema dei ponti di Konisberg





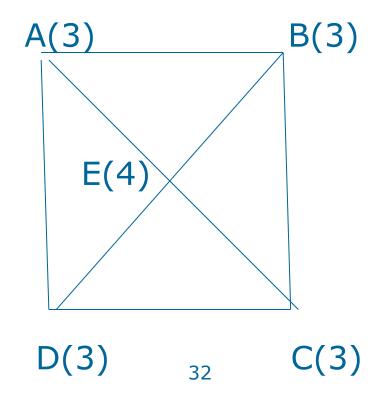
Casette



- I vertici (o nodi) sono tutti pari tranne C e D che sono dispari
- Regola di Eulero → disegno fattibile se si parte dal punto giusto cioè da un nodo dispari (ovviamente si arriva nell'altro)
- Sequenze risolutive : DEFDCFBEABC.
 DEABCDFBEFC, DCBAEBFDEFC (ne esiste un'altra....)

Casa senza tetto

(in sostanza un palazzo moderno)



 I vertici (o nodi) A B C D sono dispari ed hanno ordine tre

Il nodo centrale ha ordine 4

 Regola di Eulero → disegno non fattibile perché ha quattro nodi dispari

Come costruire un modello. MAPPA

es Metropolitana di Milano

Scopo del modello: quali caratteristiche della realtà il modello deve ignorare e a quali deve essere funzionale

In sostanza si vuole passare dalla metropolitana concreta alla sua mappa

Come costruire un modello, MAPPA

- A chi viaggia e guarda la mappa non interessa
- quanta distanza c'è fra una stazione e l'altra
- Se il tragitto è rettilineo o fa curve
- A chi viaggia e guarda la mappa interessa
- quante fermate ci sono prima di scendere
- sapere a quale fermata scendere per incrociare un'altra linea

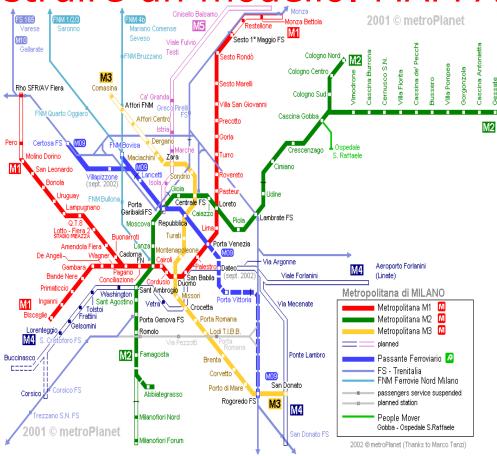
Come costruire un modello. MAPPA

Criteri:

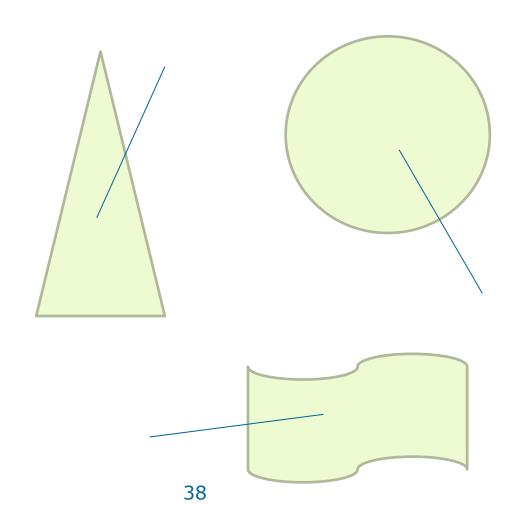
 Distanze delle stazioni non importanti → "stirato" e "accorciato" le curve rappresentative delle linee per avere stazioni equidistanti → più leggibili i nomi delle stazioni più facile programmare il percorso

La mappa non offre una visione realistica della distanza fra una stazione e l'altra ne dell'andamento del percorso

Come costruire un modello. MAPPA



Curve semplici chiuse



Topologia Curve semplici chiuse

Le figure della slide precedente sono tutte curve semplici chiuse

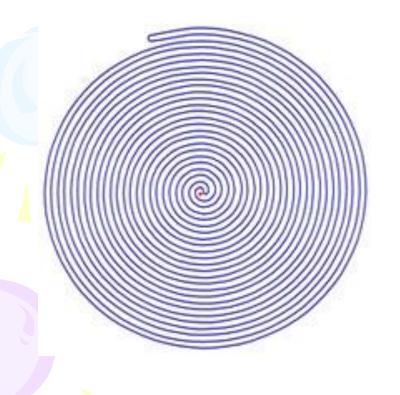
- una curva si dice <u>semplice chiusa</u> se è costituita da due archi (rettilinei o curvilinei) ABC e ADC che hanno solo gli estremi in comune
- Nel quadrato l'arco DE incontrerà sempre la curva anche in presenza di stiramenti
- Una curva semplice chiusa divide il piano in due regioni una interna ed una esterna

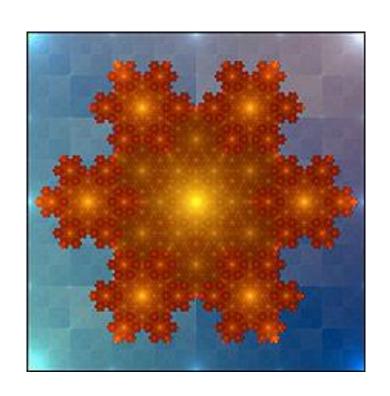
- È data una curva continua e chiusa: divide il piano in due regioni una interna ed una esterna sia:
- P un punto interno
- Q un punto esterno

allora

la linea PQ interseca la curva

Vale anche per curve complicate dove è difficile stabilire "interno" ed "esterno"





Conseguenze....

Data una curva continua e chiusa e due punti appartenenti alla curva

allora

la linea congiungente i due punti è

tutta

- o nella regione interna
- o nella regione esterna

Cioè

Le due curve non si incontrano a condizione che siano una interna e l'altra esterna

Conseguenze....

Data una curva continua e chiusa e due punti appartenenti alla curva

allora

la linea congiungente i due punti è

tutta

- o nella regione interna
- o nella regione esterna

Cioè

Le due curve non si incontrano a condizione che siano una interna e l'altra esterna

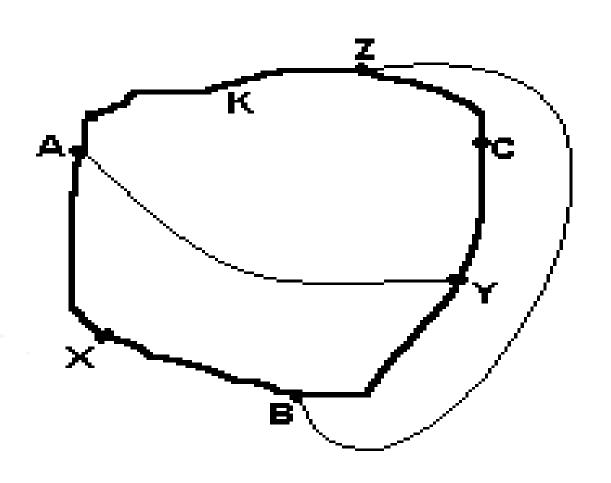
Conseguenze....

Data una curva continua e chiusa e quattro punti appartenenti alla curva

allora

le due curve congiungente non si incontrano a condizione che

siano una interna e l'altra esterna



Conseguenze....

Data una curva continua e chiusa e sei punti appartenenti alla curva

allora

Non è possibile trovare 3 curve congiungenti che non si incrocino perché almeno due devono essere nella stessa regione

Trasformazione topologica

- Qualsiasi fatto o situazione che rimanga inalterato anche dopo una distorsione si chiama invariante
- La trasformazione topologica (incurvare un segmento in un arco o un quadrato in un cerchio) altera grandezza e forma di una figura ma non da luogo ad una nuova figura topologica
- Tagliando ,strappando piegando il foglio(piano) la figura acquisisce nuovi aspetti

Trasformazione topologica

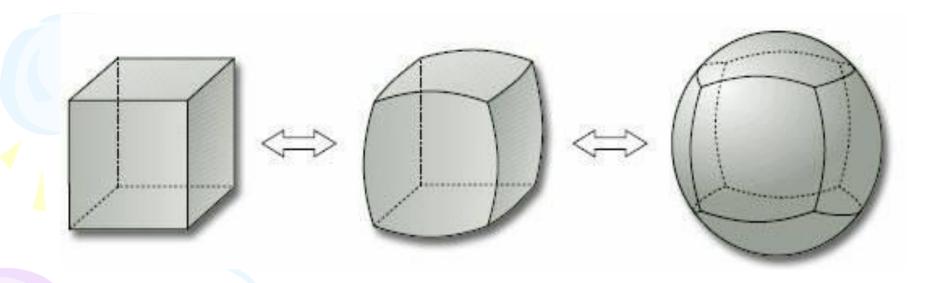
Es:

 Deformando un segmento rimangono invarianti gli estremi del segmento anche se il segmento si trasforma in una linea (una sola regione di piano)

MA

 Congiungendo gli estremi si ottiene una curva semplice chiusa (piano suddiviso in due regioni)

Trasformazione topologica



Topologia e Geometria Euclidea

- Geometria Euclidea studia ad esempio le proprietà di: grandezze, angoli, forma.... Due figure sono congruenti quando hanno la stessa grandezza e la stessa forma (completa sovrapponibilità)
- Topologia due figure sono equivalenti se si ottengono tramite una trasformazione topologica ad esempio quadrato e cerchio sono equivalenti senza problemi di grandezza

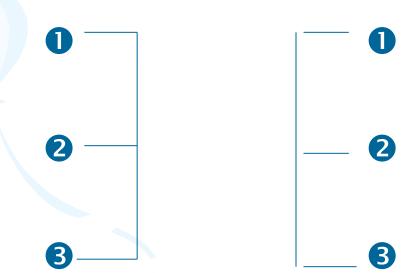
Topologia e "Califfi Persiani"

Come scegliere un marito per la propria figlia. Per:

- parlare con la figlia del Califfo → congiungere numeri uguali secondo la disposizione (A) senza che le linee si intersechino tra loro e con quella date dal disegno
- sposare la figlia del Califfo → congiungere numeri uguali secondo la disposizione (B) senza che le linee si intersechino tra loro e con quella date dal disegno

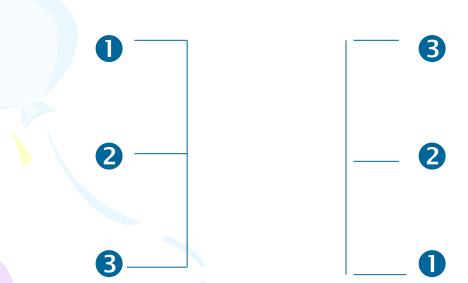
Topologia e "Califfi Persiani"

Disposizione (A)

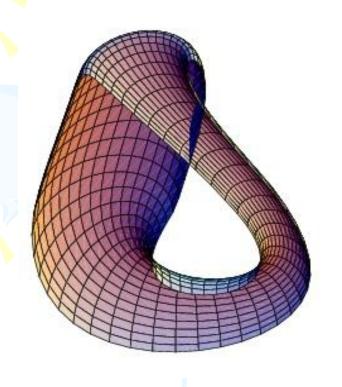


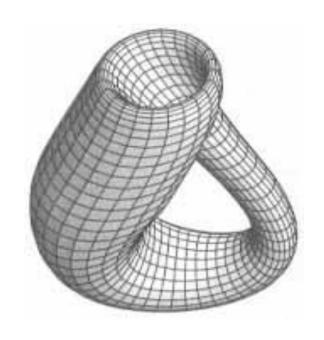
Topologia e "Califfi Persiani"

Disposizione (B)



tre DIMENSIONI e "Bottiglie strane"





di Mobius

di Klein

tre DIMENSIONI e formula di EULERO

POLIEDRO solido fatto di superfici piane es: libro

 POLIEDRO REGOLARE se le superfici piane (facce) sono figure geometriche con lati ed angoli uguali: le facce hanno la stessa forma e grandezza e gli angoli secondo cui si incontrano sono uguali

tre DIMENSIONI e formula di EULERO

solo CINQUE poliedri regolari (o Platonici)

 tetraedro (4 triangoli), esaedro(4 quadrati), ottaedro (8 triangoli), dodecaedro(12 pentagoni), icosaedro(20 triangoli) nome dal numero delle facce

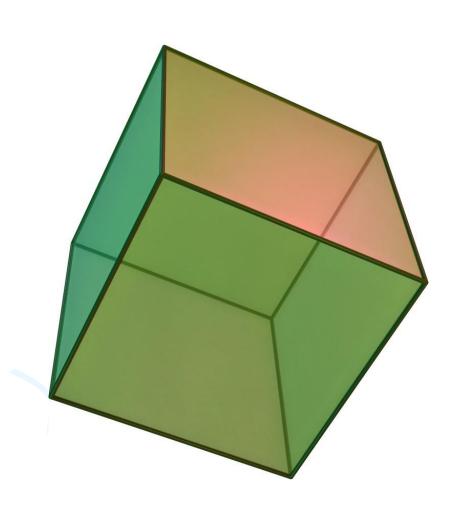
Perché solo cinque:

 in ogni vertice convergono <u>almeno</u> tre facce che devono essere non complanari la somma degli angoli deve essere minore di 360°

tre DIMENSIONI e formula di EULERO

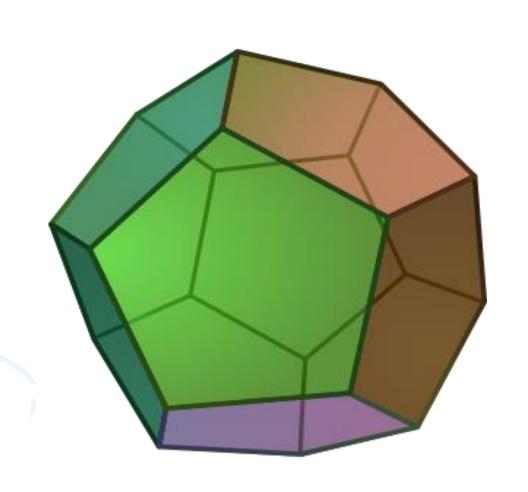
- tetraedro → triangolo equilatero → in 1 vertice 60*3
- Esaedro → quadrato → in 1 vertice 90*3
- ottaedro → triangolo equilatero → in 1 vertice 60*4
- dodecaedro→ pentagono regolare → in 1 vertice 108*3
- Icosaedro → triangolo equilatero → in 1 vertice 60*5

Poliedri regolari ESAEDRO



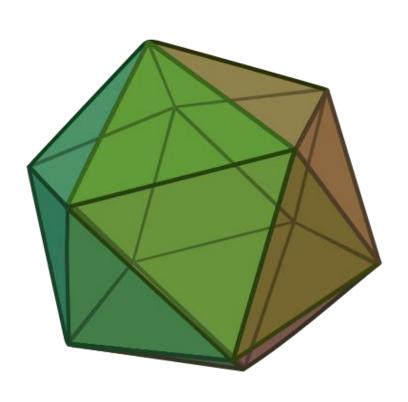
Poliedri regolari

DODECRAEDRO

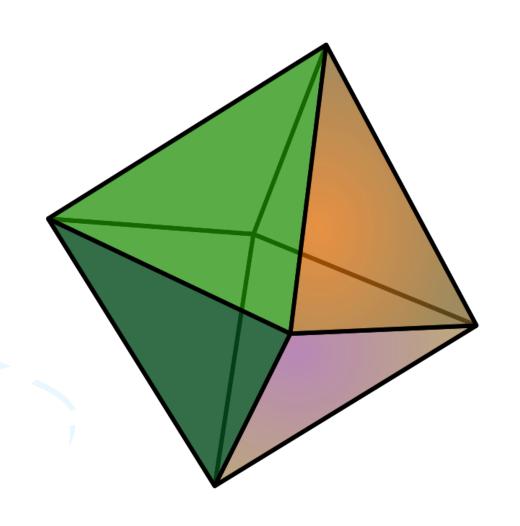


Poliedri regolari

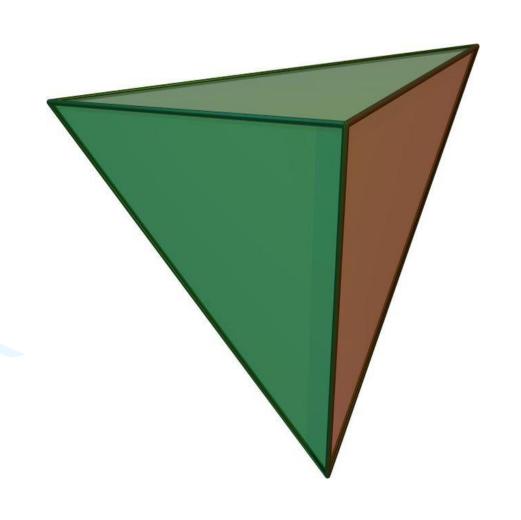
ICOSAEDRO



Poliedri regolari OTTAEDRO



Poliedri regolari TETRAEDRO



Le tre DIMENSIONI e la formula di EULERO

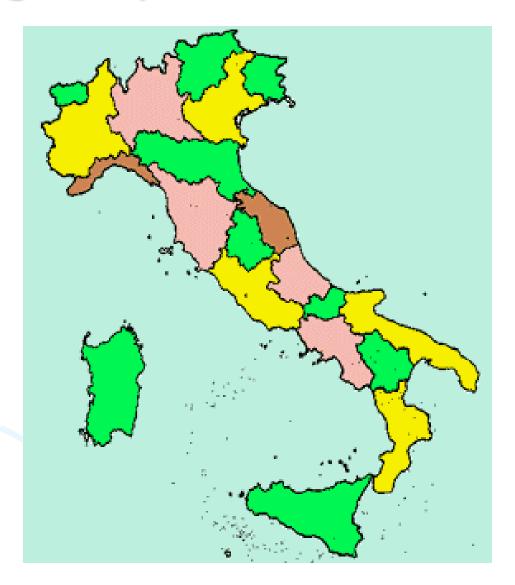
$$V-A+R=2$$

Sostituzione di simboli:

- A (archi) con
 S (spigoli del poliedro)
- R (regioni) con
 F (facce del poliedro)

$$V-S+F=2$$

Topologia il problema dei COLORI



Topologia I COLORI

In una carta geografica qualsiasi qual è il numero minimo di colori utilizzabili per ottenere una colorazione corretta?

Regola:

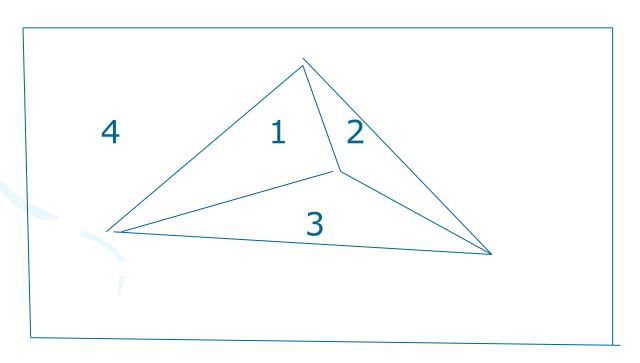
 Due paesi aventi in comune un tratto di confine debbono essere colorati diversamente

I COLORI brevissima storia

- **1852** Francis Guthrie suggerì il problema al fratello Frederick (sol. 4 colori sono sufficienti) che la propose a De Morgan (1806-1871) che interpellò Hamilton(1805-1865) divenne popolare sino ad essere proposta ai soci della London Mathematical Society
- 1978 Happel ed Hacken verificarono tramite tre elaboratori la congettura dei tre colori e la congettura dei quattro colori (1º dimostrazione computazionale)

Almeno 4, non più di 5

Per la più semplice mappa ci vogliono 4 colori



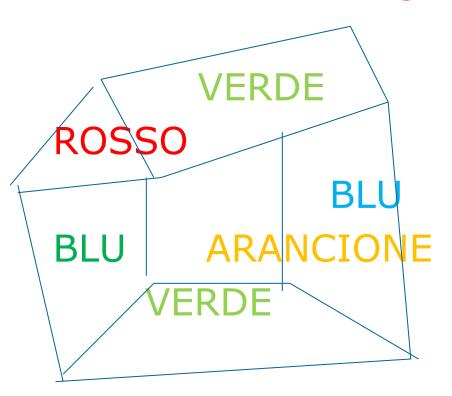
Almeno 4, non più di 5

Una qualunque mappa (cartina geografica) può venire correttamente colorata da cinque colori (dimostrazione molto complicata viene detto teorema dei cinque colori)

Quattro o cinque?

Congettura dei quattro colori

Regioni e colori



4 COLORI cenni sulla "RISOLUZIONE"

Premessa

 interessa la struttura topologica di una mappa non la forma delle regioni → topologia (grafo)

Processo

- Un punto all'interno di ogni regione (→ vertice)
- Congiungo i nodi che si trovano in regioni confinanti (→ spigolo la sua presenza significa esistenza di un confine e di un colore diverso)
- Colorare la mappa equivale a colorare i nodi in modo che gli spigoli congiungano nodi di colore diverso

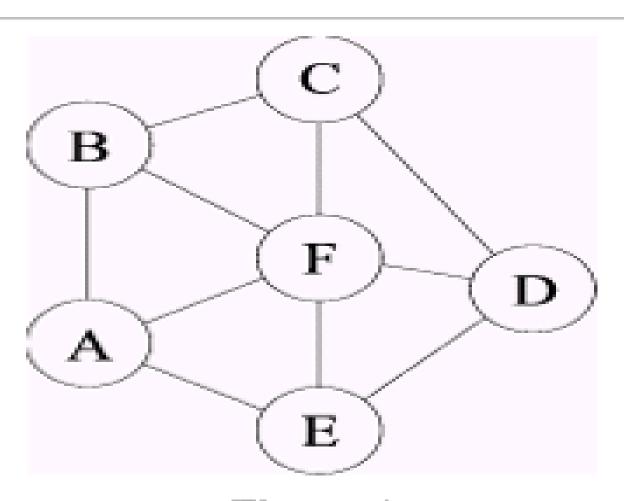
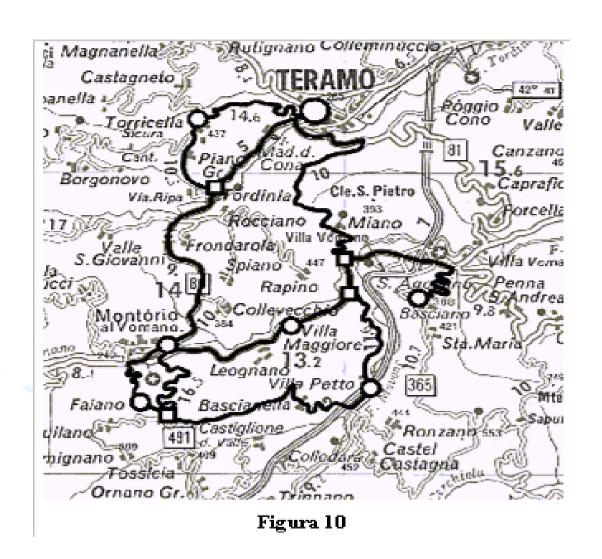


Figura 4

Grafi: Commesso viaggiatore



Come raggruppare i problemi

Topologico	Problema pratico
PONTI DI KONINSBERG	Trasporto, distribuzione posta, ispezione e manutenzione problemi distribuiti: reti elettriche, reti telefoniche, reti stradali
4 COLORI	Testi di circuiti elettronici stampati, assegnazione frequenze radiotelevisive
COMMESSO VIAGGIATORE	Determinazione di flussi di merci fra i magazzini distributori/fornitori Percorso più breve che connette due città
PROBLEMA DEI SERVIZI	Layout reti elettriche telefoniche idriche Insieme calcolatori rete telematica

Topologia Anello di MOBIUS

1858 scoperta di Augusto Mobius (matematico tedesco)

Striscia di carta ha due facce e due bordi

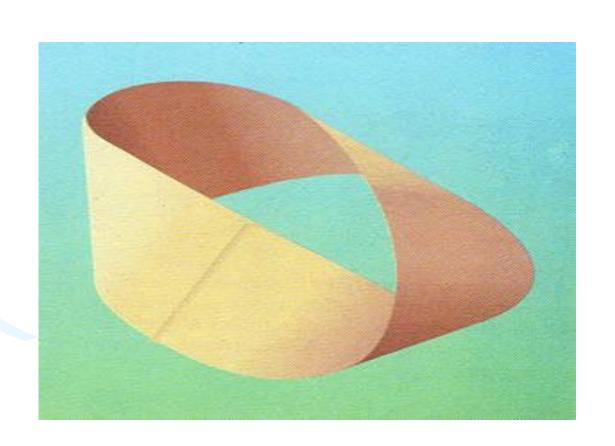
Anello di MOBIUS

Se si

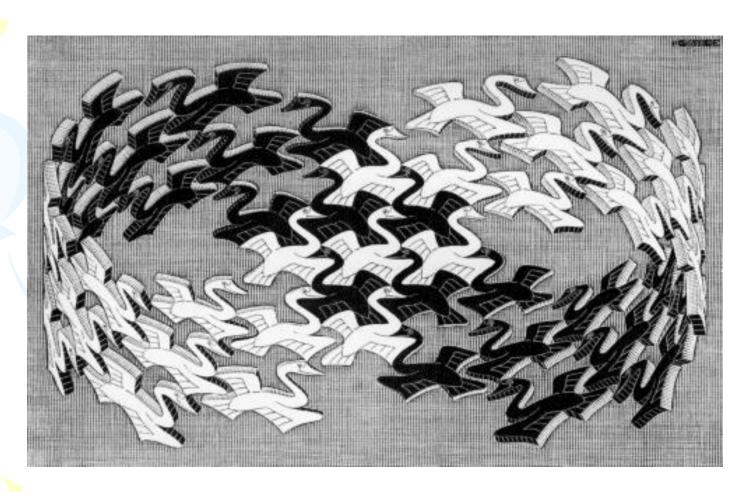
 congiunge A → A* e B → B* si ottiene una specie di striscia per passare da una faccia all'altra bisogna "attraversare" uno dei due bordi

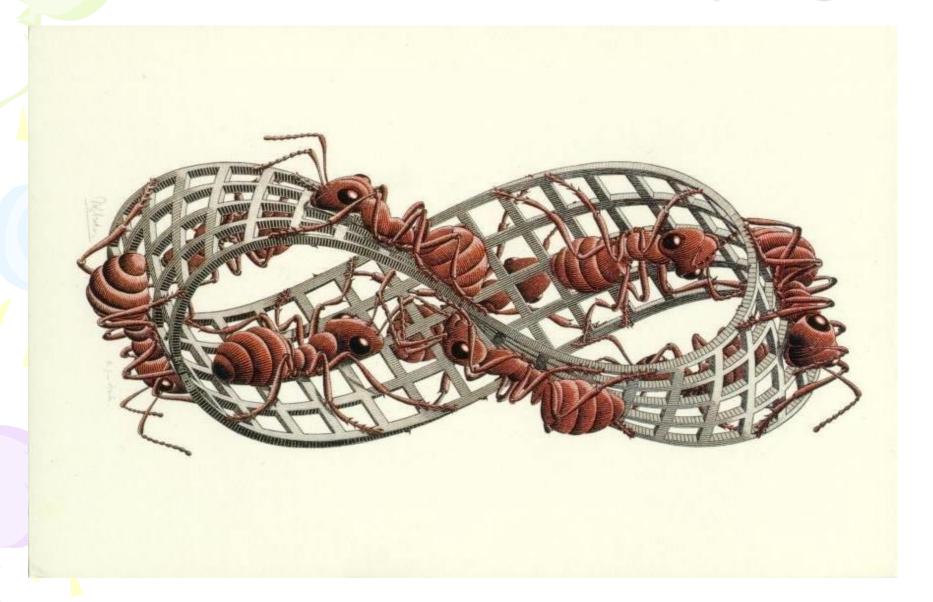
 effettua una torsione di un mezzo giro allora A → B* e B → A* ottenendo l'anello di Mobius che ha un solo bordo ed una sola faccia

Topologia Anello di MOBIUS



Anello di MOBIUS





Anello di MOBIUS

La figlia del Califfo "finalmente" si sposa

Riportando i dati sulla striscia piana e poi costruendo l'anello di Mobius si scopre che le tre congiungenti :

- $1 \rightarrow 3$
- $2 \rightarrow 2$
- $3 \rightarrow 1$

Non si incrociano mai